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Abstract: Forest soils represent a substantial portion of the terrestrial carbon (C) pool, and changes to
soil C cycling are globally significant not only for C sequestration but also for sustaining forest
productivity and ecosystem services. To quantify the effect of harvesting on soil C, we used
meta-analysis to examine a database of 945 responses to harvesting collected from 112 publications
from around the world. Harvesting reduced soil C, on average, by 11.2% with 95% CI [14.1%, 8.5%].
There was substantial variation between responses in different soil depths, with greatest losses
occurring in the O horizon (−30.2%). Much smaller but still significant losses (−3.3%) occurred in
top soil C pools (0–15 cm depth). In very deep soil (60–100+ cm), a significant loss of 17.7% of soil
C in was observed after harvest. However, only 21 of the 945 total responses examined this depth,
indicating a substantial need for more research in this area. The response of soil C to harvesting
varies substantially between soil orders, with greater losses in Spodosol and Ultisol orders and
less substantial losses in Alfisols and Andisols. Soil C takes several decades to recover following
harvest, with Spodosol and Ultisol C recovering only after at least 75 years. The publications in this
analysis were highly skewed toward surface sampling, with a maximum sampling depth of 36 cm,
on average. Sampling deep soil represents one of the best opportunities to reduce uncertainty in the
understanding of the response of soil C to forest harvest.
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1. Introduction

Forest ecosystems contain 1240 Pg C [1,2], which represents as much as 80% of aboveground
terrestrial C and 70% of all soil organic C [3–5]. The relative proportion of forest C found in soils
varies among biomes, ranging from roughly 85% of the terrestrial C pool in boreal forests, to 60% in
temperate forests, to 50% in tropical rainforests [1,6]. The net balance of soil C in forests relies upon
large rates of detrital inputs (61.4 Pg C year−1) and respiratory losses (60 Pg C year−1), which together
represent substantial yearly turnover in the soil C pool [7]. By altering the rates of detrital inputs and
respiratory outputs in soils, the extent and intensity of forest harvest can have substantial impacts not
only on ecosystem function but also on atmospheric chemistry and global climate [6,8,9].

C is one of the principal components of soil organic matter (SOM), a key component of soil that
plays an important role in many biological, chemical, and physical properties [10–12]. SOM provides
a crucial source of energy and nutrients for soil microbes, buffers soil pH, and helps to stabilize soil
structure [12,13]. Along with nitrogen and phosphorus, SOM is considered a critical indicator for soil
health and quality.

Thus, soil C is an essential component of forest C accounting, yet many models assume that only
surface soil responds to forest management and that soil C returns to equilibrium within 20 years
after harvest [14]. Recent national or global assessments of forest C lack any mention of mineral soil
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C [15–17], implicitly assuming that soil C remains constant after forest harvest. Furthermore, carbon
monitoring programs include soil C inconsistently. For example, the American Carbon Registry [18]
and the Verified Carbon Standard [19] do not require or specify protocols for soil C measurements.
The Intergovernmental Panel on Climate Change (IPCC) inventory standards [20] assume constant
mineral soil C in Tier 1, with an option for inclusion of national soil C inventories only if preferred
by a particular agency, and the U.S. Forest Service Inventory and Analysis Program [21] specifically
limits soil sampling to 20 cm depth. The inclusion of soil in models of ecosystem C following harvest
can have significant effects. For example, in a model of the forest C pool change following intensive
bioenergy harvest, Zanchi et al. [22] show that the inclusion of soil increases the C payback period by
approximately 25 years when substituting forest bioenergy for coal. Thus, the inclusion or exclusion of
soil in ecosystem C models and ecological monitoring programs can have a major impact on forest
policy when attempting to mitigate climate change through forest management [14].

Ambiguity about the effect of forest harvesting on soil C has persisted in the literature, likely
exacerbated by the inherent spatial and temporal variability in soil measurements that can obscure the
results of even the most well-designed studies [23]. By gathering the results from many studies that
apply similar treatments, meta-analysis can overcome the high levels of spatial and temporal variability
to provide cumulative answers that may not have been evident within individual sites [23,24]. Previous
meta-analyses on the effect of harvesting on soil C have found either minimal effects on soil C pools [25]
or substantial (30%) loss to O horizon pools with little change to mineral soil C [9]. Variation in soil C
response has been shown to significantly differ among soil types and different harvesting strategies [9].

Studies of soil C change due to harvest have historically been strongly biased toward surface
sampling [26]. Nave et al. [9] reported a mixed response to harvest in deeper soil (20–100 cm depth),
ranging from a slight average decrease (−5%) in studies that reported C pools to a large average
increase (+20%) in studies that reported only C concentration. Several recent reviews have highlighted
the need for greater sampling of deep soil [26–28], especially as the shifting paradigm of SOM research
has come to reject the assumption that deep soil C cannot not change on timescales relevant to
anthropogenic C emissions [29–31]. Resolving the response of deep soil horizons to harvesting is
important because these horizons occupy a much greater volume than surface O and A horizons.
Even small changes in subsurface C can exacerbate or compensate for changes in surface soil C, and
neither the magnitude nor direction of subsoil C change is clear from previous research.

The process of meta-analysis is necessarily cumulative, with each iteration updating previous
analyses to further constrain the error in effect size estimates and to extend the scope of analysis. Thus,
the objective of our meta-analysis is to update and extend the findings of Nave et al. [9] with respect to
five major research questions:

(1) What is the overall effect of forest harvesting on soil C pools?
(2) How does the effect of forest harvest on soil C change with soil depth?
(3) To what extent does the effect of harvesting differ among soil orders?
(4) Do site pretreatment strategies or increasing harvesting intensity (i.e., whole tree harvest)

moderate or accentuate harvesting impacts on soil C?
(5) How long does soil C take to recover from harvest across different soil types?

2. Materials and Methods

Meta-analysis is a cumulative activity which builds upon previous research and meta-analyses on
similar research questions. Our meta-analysis builds upon the work of Nave et al. [9] and Johnson
and Curtis [25] by updating their results with studies published between 2008 and 2016. The database
published by Nave et al. [9] was independently recreated from each of 75 references. Metadata for
each study was verified, and additional metadata such as the sampling depth of each response ratio
was gathered. A total of 8 effect sizes differed in our dataset from the Nave et al. [9] database, all of
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which were either additional data for mineral soils or a split of one effect size into two based upon
sampling depth.

To add to this database with studies published between 2008 and 2016, we searched the
peer-reviewed literature for relevant studies using the online database Web of Science with
combinations of the terms: forest, timber, harvest, logging, soil C, soil organic matter, and management.
No climate criteria was used to screen studies. To be included in the meta-analysis, publications had
to report both a control as well as harvested treatments. Both pretreatment soil C and unharvested
reference stands were considered acceptable controls, and measurements of reference stands were
considered the superior control. For forest chronosequence studies, soil C data from the oldest stand
was used as the control. A minimum stand age of 30 years was considered acceptable for control
stands, although most studies used controls of considerably greater age. Nave et al. [9] found that
studies reporting only soil C concentration data yielded different conclusions about the direction of
harvest effects than those studies reporting soil C pool data. Consequently, soil C pool data was used
in our meta-analysis when both concentration and pool data were available.

We collected potentially useful predictor variables of soil C response from each publication,
including soil order, geographic region, and time since harvest (Table 1). Binning of continuous
predictor variables (such as precipitation) was carried out in the same intervals as Nave et al. [9] for
ease of comparison. Each study was categorized by harvest, residue management, and site preparation
strategies. Harvesting technique was categorized as sawlog when only the merchantable bole (stem)
was removed from the site or whole tree harvest (WTH) when the tops, limbs, and foliage were
removed in addition to the bole. To test the response of soil C at different depths, data from each study
was separated into one of five groups: O horizon, top soil (0–15 cm), mid soil (15–30 cm), deep soil
(30–60 cm), and very deep soil (60–100+ cm). A sixth group called whole soil was assigned to studies
that aggregated mineral soil samples instead of reporting results at separate depths. Several studies
aggregated soil data from 0–100 cm, which reduced the number of unique deep and very deep soil
observations even though these depths were separately sampled.

Table 1. Factors gathered as potential predictor variables in this meta-analysis.

Factor Levels

Reporting units Pool (Mg·ha−1), concentration (% or mg·g−1)

Soil Depth

O horizon Forest Floor
Top Soil 0–15 cm
Mid Soil 15–30 cm
Deep Soil 30–60 cm
Very Deep 60–100+ cm

Overstory species Hardwood, conifer/mixed
Soil order Alfisol, Andisol, Entisol, Inceptisol, Mollisol, Spodosol, Oxisol, Ultisol
Geographic group NE North America, NW North America, SE North America,

SW North America, Europe, Asia, Pacific (Australia, New Zealand)
Harvest type Clearcut, thin
Harvest intensity Stem only, whole tree
Residue management Removed, spread
Site preparation Broadcast burn, tillage/scarification
Soil texture Fine (mostly silt or clay), coarse (mostly sand), organic
Time since harvest Continuous
Mean Annual Temperature 0–5, 5–7.5, 7.6–10, 10.1–15, 15.1–20, >20 (◦C)
Mean Annual Precipitation <500, 500−750, 751−1000, 1001−1400, 1401−1800, >1800 (mm)

Our meta-analysis estimates the magnitude of change in soil C using the ln-transformed response
ratio R, which is defined as

ln (R) = ln
(

XT

XC

)
(1)
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where XT is the mean soil C value of treatment (harvested) observations, and XC is the mean soil C
value of control observations for a given set of experimental conditions at a specific site and depth.
Multiple response ratios were recorded for each publication, with the number of response ratios (k)
depending upon the number of experimental conditions imposed and the number of samples taken
by depth. For example, a publication that reports the results of two thinning treatments and two
clear-cut treatments at three depth increments (forest floor, top soil, and mid soil) versus a control
would yield 12 response ratios. R is a unit-less measure of effect size, which allows comparison
among studies that report data in different units [24]. By back transforming ln(R), [(e(ln(R)) − 1)× 100],
mean response ratios can be interpreted as the percentage change in soil C relative to the control.
Estimates of the standard deviation and sample size for each XT and XC were not available in several
publications. Consequently, an accurate estimate of total heterogeneity (QT) for the dataset was
not possible. Subsequent partitioning of QT into within- and among-group heterogeneity (QW and
QA, respectively) for random and mixed effect models (as is customary for meta-analyses) was not
possible [24]. Instead, we used nonparametric resampling techniques (bootstrapping) to estimate
confidence intervals around mean effect sizes in an unweighted meta-analysis [9]. Adams et al. [32]
recommend bootstrapping confidence intervals for ecological meta-analyses, and show that confidence
bounds based on this method are more conservative than standard meta-analyses. Bootstrapping was
implemented using the bootES package [33] in R [34]. For all statistical tests in our analysis, α = 0.05.

Although not exhaustive, the database we compiled from the literature search contained 945 soil C
response ratios from 112 publications published between 1979 and 2016. Roughly half the dataset was
comprised of response ratios analyzed by Nave et al. [9]. The full dataset is available as Supplementary
Material, including maximum sampling depth and the number of response ratios from each paper
(Appendix A).

3. Results

3.1. Overall Effect and Change with Depth

Across all studies, harvesting led to a significant average decrease in soil C of 11.2% relative
to control (Figure 1). Whether the response to harvest was reported as pools or concentrations had
a large impact on the estimated effect of harvest on soil C, with mean response for studies reporting
C concentration units (%, mg·g−1, etc.) 16.2% higher (with a 95% CI [20.9%, 11.8%]) than studies
reporting C pool units (Mg·ha−1, tons·ha−1, etc.). Concentration responses are higher than pool
responses at all soil depths, except for very deep and whole mineral soil, which did not have enough
concentration response ratios to construct separate confidence intervals (Figure 1). Consequently, all
subsequent analyses focused on the subset of data reporting soil C pools.

Several different soil layers show significant losses of C due to harvesting. Overall, O horizons
lost 30.2% of their carbon as a result of harvesting. Losses from top soil were much smaller, although
the estimated loss when reported in pool units was significant (−3.3%). In mid (15–30 cm) and deep
soil (30–60 cm), the average loss of soil C was greater than topsoil, although the smaller number of
response ratios for these depths resulted in more poorly constrained estimates. Studies only reporting
C concentration observed a 14.5% increase in deep soil (30–60 cm), although the sample size was
relatively small. The overall effect in very deep soil (60–100+ cm) was significant, with an average loss
of 17.7%. Unfortunately, this region of the profile was not frequently sampled (21 response ratios out
of 945 total), and consequently the 95% confidence interval is quite wide.
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Figure 1. Response of soil C to forest harvesting, overall and faceted by soil depth. All points are
back-transformed mean effect sizes ± 95% confidence intervals calculated by nonparametric bootstrap.
The number of response ratios (k) that make up each mean effect is listed on the right. Mean effects
with confidence intervals overlapping the dashed line (0%) show no significant change in soil C due to
harvesting. Within each facet, mean effect sizes are shown for the overall effect as well as separately for
studies reporting C pool units or concentration units.

3.2. Effect of Harvesting across Soil Orders

The effect of harvesting on soil C differs between soil orders (Figure 2). For the Alfisols and
Inceptisols, there are significant losses in O horizon C pools (−12.0% and −45.4%, respectively), but
no significant loss in the mineral soil. Mollisols lost an average of 17.7%, although neither O horizon
nor mineral soil responses were significantly different from 0. In several cases, small samples sizes
made separate testing of organic and mineral soil impossible within a single order (Andisols, Entisols,
Oxisols). However, in each of these cases the overall effect was significant. Soil C increased by 24.5% on
average in Andisols, but decreased by 18.8% in Entisols and 30.9% in Oxisols. The number of response
ratios was more concentrated in the Alfisol, Inceptisol, Spodosol, and Ultisol orders, although a large
number of publications did not report information on soil classification. The response to harvesting
in Spodosols is substantial (−19.0% overall), with significant losses in both the O horizon (−36.4%)
and moderately less in the mineral soil (−9.1%). Likewise, Ultisols lost significant soil C in response
to harvesting (−24.7% overall), with the most substantial losses occurring in the O horizon (−66.0%)
rather than in the mineral soil (−11.9%).
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Figure 2. Response of soil C to harvesting in different soil orders. Mean effect sizes ± 95% confidence
intervals calculated by nonparametric bootstrap are shown for all response ratios in each soil order
(Overall) and broken out into mineral soil or O horizon. The number of response ratios (k) comprising
each mean effect are listed on the right. Effect sizes were calculated only on response ratios reported in
pool units (k = 746).

3.3. Differences in Response to Harvest between Forest Types

The response of soil C to harvest differs between hardwood and coniferous/mixed forest types
(Figure 3). The decline in O horizon C pools is significantly greater in conifer/mixed forests (−38.1%)
compared to hardwood forests (−25.4%). Differences between forest types were not significant for any
mineral soil layer. However, the decline in soil C after harvest was significant for hardwood forests
but not conifer/mixed forests in deep soil (30–60 cm) and in studies reporting whole mineral soil C
pools. Also in these studies, the difference between hardwood and conifer/mixed forest response to
harvest is marginally significant (p < 0.1). The number of observations are highly concentrated in O
horizon and top soil, consequently limiting the precision of mean effect size estimates in deeper layers.
No observations for hardwood forest were made in very deep soil (60–100+ cm).
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Figure 3. Response of soil C harvesting at different depths in soil, broken down by hardwood or
conifer/mixed forest types. Mean effect sizes ± 95% confidence intervals calculated by nonparametric
bootstrap are shown for hardwood and conifer/mixed forests. Blue circles show the mean difference
between these forest types (Hardwood–Conifer/Mix) ± 95% confidence interval for the difference.
Differences are calculated on the logarithmic effect size scale, and then back-transformed to % change,
and thus do not necessarily add up on the % change scale. The number of response ratios (k) in each
forest type at each depth is listed on the right. Data for very deep soil is not shown because there were
no observations for this soil layer in hardwood forests.

3.4. Harvest Intensity, Residue Management and Site Pretreatment

Differences in forest management strategies can significantly impact the response of soil C to
harvesting (Figure 4). While there was no significant overall difference observed between thinning
and clear-cut harvesting, less C was lost from mineral soils under clear-cut harvesting compared to
thinning (+9.3%). Likewise, harvest intensity significantly changed the response of mineral soil C,
with soils undergoing whole tree harvesting losing 13.3% less C than bole-only harvesting. Possible
mechanisms for these counter-intuitive results are considered in Discussion Section 4.5.

The practice of broadcast burning sites in preparation for planting after a harvest leads to
significant additional losses of soil C, with burned soils losing 15.2% more C than soils with no
pretreatment. This effect is especially severe in the O horizon (40.9% additional loss than if sites were
not burned), and somewhat curtailed in the mineral soil (8.3% additional loss). The wide 95% CI for
the estimate of differences in O horizon responses due to burning reflects disparities in burn severity
and treatment implementation among different studies.

Spreading of residual materials across harvested sites (by chipping tops and limbs or other
methods) resulted in significant additional loss of soil C (−10.9%), with these extra losses occurring
mostly in the mineral soil (−17.5%). On the other hand, residue removal resulted in no significant
additional losses to soil C.

Tillage is sometimes used to prepare soils for planting after harvest, either to create raised planting
beds or to prepare the soil seed bed. This intensive style of site preparation did not result in significant
losses in soil C, especially in the mineral soil. However, very large losses were reported in the O horizon
(mean effect = −37.1%) with a very wide confidence interval due to a small number of observations.
Additional study of the effect of tillage would help to reduce this error.
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Figure 4. Differences in response of soil C to harvesting between treatment strategies. Differences are
calculated by subtracting [more intensive treatment] − [less intensive treatment], such that positive
differences represent reduced loss of C due to more intensive treatment, and negative differences
represent increased losses of C due to more intensive treatment. Point estimates are back-transformed
differences between mean effect sizes ± 95% confidence intervals calculated by nonparametric
bootstrap. Mean effect differences with confidence intervals overlapping the dashed line (0%) show
no significant difference between the harvesting, residual management, or pretreatment strategies.
The number of response ratios (k) for the intensive treatment in each comparison appear on the left and
for the less intensive treatment on the right.

3.5. Recovery of Soil C after Harvest

The recovery time for soil C following harvest differs among soil orders (Figure 5). Only 4 soil
orders contained enough observations over time to model recovery times: Alfisols, Inceptisols,
Spodosols, and Ultisols. We modeled time as a second degree polynomial (Time + Time2) separately
for O horizons and mineral soils for each soil order (Table 2).

Table 2. Linear regression coefficients and significance for second degree polynomial model of response
of soil C to harvesting over time.

Coefficient Estimate SE t-Value p-Value

Intercept (Alfisol, mineral soil) 12.702 3.587 3.541 0.0004
O horizon −21.475 3.766 −5.703 <0.0001
Inceptisol −10.876 5.717 −1.902 0.0577
Spodosol −14.717 4.320 −3.407 0.0007

Ultisol −24.776 5.391 −4.596 <0.0001
Time −67.834 41.56 −1.632 0.10325
Time2 120.412 40.361 2.983 0.0030

Residual SE: 40.24 on 533 DF
F-Statistic: 10.74 on 6 and 533 df, p < 0.0001 R2 = 0.108 Adj. R2 = 0.098
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Figure 5. Temporal patterns in both O horizon (yellow triangle) and mineral soil (blue circle) C pools for
Alfisol, Inceptisol, Spodosol, and Ultisol orders. Other soil orders are not shown due to an inadequate
number of response ratios over time. Regression lines show trends with time using a second order
polynomial. For the overall model, F = 9.205 on 7 and 532 degrees of freedom, Adj. R2 = 0.096, and
p < 0.0001 (Table 2).

4. Discussion

4.1. Overall Effect of Harvesting on Soil C

Our results reveal that across many publications in the literature there is a significant loss of soil C
in response to harvest (−11.2% overall, −14.4% for studies reporting C pools). This estimate is slightly
greater than that found by Nave et al. [9], who reported −8% change relative to control. The difference
between these estimates derives from additional losses reported in mineral soil, since the effect of
harvesting on O horizon C is identical between this study and Nave et al. [9] (−30%). Indeed, while no
significant loss of soil C due to harvesting was reported in previous meta-analyses on the subject [9,25],
this analysis reveals significant if small losses in various mineral soil layers. Our meta-analysis has
roughly double the number of responses than previous meta-analyses on the subject, and consequently
has greater statistical power. In particular, this has allowed us to break down the response of mineral
soil C to harvest into more depth increments to better characterize how response is moderated or
accentuated by depth.

4.2. Depth Distribution of Soil C Response to Harvest

The response of soil C to harvest differs among depths in the soil. O horizons show the most
substantial declines (by percentage), although the O horizon is typically a smaller pool of C than
mineral soil horizons. Consequently, smaller absolute declines in O horizon C pools can lead to
larger response ratios. Forest type significantly alters the response of O horizons to harvesting, with
hardwood forests undergoing less drastic losses than conifer and mixed forests (Figure 3). This result
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is in contrast with Nave et al. [9], who found that conifer O horizon soil C declines significantly less
than hardwood forest floors. Coniferous forest litter is thought to be more chemically recalcitrant to
decomposition because of higher C/N and lignin/N, as well as slower N mineralization rates [35,36].
The trend for more soil C loss from coniferous forest floors could be due to differences in the harvesting
techniques utilized for each forest type. On the other hand, less change in soil C in coniferous forests
in deeper mineral soils could suggest that some of the additional loss in O horizon C pools is the
result of translocation of C into mineral soil rather than mineralization to CO2. Whatever the case, the
mechanism for this difference is not clear and warrants additional study.

In mineral soils, the relative response to harvest is typically less than the O horizon, but this
small relative loss might correspond to a larger absolute loss of C in the mineral soil in many forests.
The major exception to this pattern are Spodosols, which can contain larger proportions of total soil
C in deep, acidic O horizons. Declines in top soil C pools were modest (−3.3%) but still significant
(Figure 1). Mean effect size estimates become more negative with soil depth, although these estimates
are not significant. The overall estimate of change in very deep soil (60–100+ cm) shows substantial
and significant loss of C (−17.7%). This estimate, however, only covers a small number of observations
(21) from Spodosol, Ultisol, Alfisol, and Inceptisol soil orders and completely excludes hardwood
forests. The lack of observations in deeper soil horizons leads to very wide confidence intervals.

On average, the maximum depth of soil sampled by the publications in this meta-analysis was
35.9 cm (Figure 6). The average depth of sampling for each response ratio in the database is even more
surface-skewed at 21.3 cm. Many of the observations down to 100 cm in the literature only report
treatment differences for the whole mineral soil profile (0–100 cm), which eliminates any possibility
of understanding the relative response of different horizons or depths. The scarcity of observations
in deep soil is incongruous with the increasing loss of soil C with depth relative to control observed
in this analysis. More important than the magnitude or significance of the harvest response in very
deep soil is the conclusion that much greater attention should be paid to deep soil C pools in both
individual forest manipulation experiments and broad-scale C inventory.Forests 2016, 7, 308    11 of 22 
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Figure 6. Number of response ratios plotted by the maximum depth of sampling for each observation.
Response ratios calculated from concentration are in blue, and from pools in orange. The average
depth of all response ratios is denoted by the solid green line (21.3 cm, n = 945). The average maximum
sampling depth for all 112 publications in the meta-analysis is denoted by the dashed red line (35.9 cm).

While soil C in deep soil is much less concentrated than in O and A horizons, subsurface soil
represents a much greater volume of soil than surface soil, especially in older/more well developed soil
orders like Alfisols, Ultisols, and Oxisols. Some major regions for forestry contain substantial portions
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of total soil C in deep horizons. For example, 38% of total soil C was below 50 cm and 24.1% below
1 m in production forest soils in the Pacific Northwest [37]. The imprint of biological activity extends
many meters into soil, even into the C horizon [38]. Globally, the average maximum rooting depth for
trees is ~7 m [39], far outreaching even the deepest observations in this database. Harvesting disrupts
the continued growth and turnover of roots extended deep into soil by mature trees, which in turn
disturbs the steady state of C cycling in deep soil by changing environmental conditions (temperature,
moisture) as well as the type and rate of C inputs. Furthermore, the flush of nitrate and dissolved
organic matter that frequently follows harvest [40,41] could prime the breakdown of older, subsurface
C by providing a spike in nutrient availability and labile energy sources [31,42,43]. Alteration of
aboveground ecosystems can cause changes in subsurface soils. For example, Mobley et al. [44]
observed that, over a period of several decades following afforestation of agricultural land, modest C
gains in surface soil were more than offset by large losses in soil C below 30 cm. Neither the response
of deep soil C to harvest nor the mechanisms for that change have been sufficiently resolved in the
literature, and future work to address these questions are necessary.

4.3. Differences in Soil C Response to Harvest among Soil Orders

Substantial variation in response to harvest was observed among soil orders. Several soil orders
had very few response ratios (Andisols, Entisols, Mollisols, and Oxisols), which greatly widens
confidence intervals. Nonetheless, significant changes in soil C in response to harvest were observed
for all four of these orders. Andisols were the only order to show a significant average increase in
soil C in response to harvest. This likely stems from Andisols particular mineralogy, which is often
characterized by short-range-order minerals like allophane and imogolite [45–47]. The capacity for
these types of minerals to adsorb organic matter makes Andisol soil C especially resistant to loss after
harvesting. Alfisols also appear to be resistant to loss of soil C after harvesting, with relatively small
loss in O horizons (−12.0%) being the only significant effect. All other soil orders have significant
overall losses in soil C, roughly −20% for Entisols, Inceptisols, Mollisols, Spodosols, and Ultisols.
The uneven distribution of observations among soil orders (most response ratios in the database
are from Alfisols, Inceptisols, Spodosols, and Ultisols) results in substantial differences in the size of
confidence intervals among different orders. Unfortunately, many studies did not report soil taxonomic
information, and thus 115 response ratios could not be assigned to a soil order. The lack of studies
on Andisols is curious given the importance of these soils to forestry in several regions such as the
Pacific Northwest, USA and New Zealand. Several studies on Andisol and other under-represented
soil orders were excluded from this analysis because of a lack of appropriate controls.

4.4. Recovery of Soil C after Harvest

Recovery of soil C after harvesting can take several decades [9]. O horizon pools decline more
severely than mineral soil pools, especially in the first several decades (Figure 5). In Spodosols, O
horizons recovered from harvesting after 60–85 years, while mineral soil recovered over a longer period
of 75–100+ years. While the response to harvest was less severe in mineral soils, the longer recovery
period implies either lagged response time between forest floor and mineral soils or differences in
the decay rate constants leading to longer-term changes in mineral soil C compared to the forest floor.
In the case of Alfisols and Inceptisols, soil C in mineral pools increased or stayed the same after harvest,
while O horizons declined. However, the observations of harvest effects on Alfisols, Inceptisols, and
Ultisols were largely confined to within the first 50 years post-harvest. Consequently, an estimate
for the recovery period of soil C pools in these soil orders cannot be assessed with much confidence.
Continued observation of existing harvesting experiments in other soil orders must be made to better
characterize changes in soil C over time. For Andisols, Entisols, Mollisols, and Oxisols, only a few time
points have been documented, and much further study will be necessary to understand recovery of
soil C after harvest.
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The modeled recovery time has a fairly low adjusted R2 (0.1) and thus a low predictive capacity.
Substantial variation in the response to harvest exists within each soil order, reflecting differences in
tree species, harvest intensity, and pretreatment strategies, among other factors. Moreover, soil orders
are hardly homogeneous, and differences in the response of soil C among lower levels of classification
within each order could be as important as order-level differences. Nonetheless, the substantial and
significant differences between orders considered in the model suggest that both the resistance of
soil C to change and the recovery period of soil C following harvest (resilience) consistently varies
among soil types. Compared with 20-year recovery periods assumed by many models [14], our results
indicate that soil C recovery takes place over at least triple that time frame for both O horizons and
mineral soil in many cases.

While forests >30 years of age were considered acceptable controls for this analysis, the
preponderance of data in this meta-analysis show decreases in soil C relative to control at
time = 30 years. Consequently, studies that use mature second growth stands barely over this threshold
for experimental controls likely underestimate the response of soil C due to harvesting treatments.
Depending upon the site conditions and soil order, control stands of at least 50–75+ years since harvest
would be recommended, with older stands being more accurate controls.

4.5. The Effect of Harvest Strategies on Soil C

Differences in harvesting and soil pretreatment strategies significantly impact the loss of soil
C after harvest. Curiously, despite the greater relative losses of soil C in O horizons, significant
differences between harvest intensities and pretreatment strategies were only found in the mineral
soil with the exception of broadcast burning (Figure 4). The reduced loss of soil C from mineral soil
observed in treatments with greater harvest intensity (+9.3% for clearcut, +13.3% for whole tree harvest)
runs counter to the intended effect of these experimental treatments on soil C. One possibility is that
increased harvest intensity reduces the quantity of dissolved organic matter and inorganic nutrients
leached into the mineral soil, thus reducing the priming [42,48,49] of mineral soil C mineralization
through less addition of energy-rich substrates and nutrients. Another possibility is that response of
soil C to increased harvest intensity is soil-type specific, and thus an aggregate analysis such as this is
subject to bias by unequal sampling of different soil orders. Whatever the case, this dataset cannot
identify the specific mechanism(s) driving this difference, and further study is warranted.

Tilling of forest soils prior to planting should intuitively disrupt O horizons to a greater extent
than less intensive practices. However, due to the very small number of observations of this practice in
the dataset, the large mean treatment effect on soil C was could not be differentiated from 0. By mixing
organic material into the surface mineral soil, tilling could increase top soil C in the short term and
possibly prime additional breakdown of C over time. In regions where this practice is used, additional
research could help to reveal the mechanisms driving change in the soil C of O horizons and mineral
following tillage.

Broadcast burning led consistently to additional loss of soil C in both O horizons and mineral
soil. The large additional reduction in O horizon C (−40.9%) is expected given that such a treatment is
intended to reduce slash on site to facilitate planting. The loss of carbon after harvest extends into deep
soil, especially following slash burning (Figure 7). Although there are few observations in very deep
soil (60–100+ cm), burning appears to especially exacerbate C losses in this layer. This result is despite
the direct effects of fire (such as soil heating and nutrient volatilization) being highly attenuated with
depth [50,51]. Levels of mineralized nitrogen (NH4

+ and NO3
−) and soluble sugars spike within the

first year following fire, leading to increased microbial biomass N and N leaching loss [52]. Thus, the
flush of nutrients and organic matter into deeper mineral soil following post-harvest broadcast burning
has the potential to impact soil C dynamics throughout the soil profile. The number of observations
in deep and very deep layers is small, and consequently additional research is necessary to better
differentiate between harvesting and fire effects in deep soil horizons.
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Figure 7. Absolute change in soil C due to harvest for each soil depth in this analysis (O horizon, top,
mid, deep, very deep, and whole mineral soil). Different points show burned (yellow triangle) and
unburned (blue circle) pretreatment strategies. Dashed 1:1 lines in each facet represent no response
due to harvest. The total number of responses shown is k = 746.

5. Conclusions

We analyzed 945 studies from 112 publications to examine the effect of harvest on forest soil
C around the globe. There is a significant overall reduction in forest soil C following harvest that
occurs in both the O horizon and mineral soil. Significant variation in the response to harvesting was
observed among different soil depths, among soil orders, between overstory forest types, and between
different harvest intensities and pretreatment strategies. Broadcast burning, in particular, appears to
exacerbate loss of soil C in both organic and mineral horizons following harvest. The recovery period
of soil C following harvest depends upon soil type and takes at least 60 years in many production
forests. One of the most important findings of this analysis is a significant loss (−17.7%) of soil C
following harvest in very deep soil (60–100+ cm). Deep layers of the soil are greatly under-represented
in the literature, and consequently, there is great uncertainty around this estimate. Examination of
deep soil horizons in existing manipulative forest studies, in new studies, and in C inventory should
be a clear objective for future research.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/7/12/308/S1,
Table S1: Harvest meta-analysis database (Excel file).
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Appendix A. Publications Providing Response Ratios for This Analysis

Reference Year k Max Depth
(cm)

Time Since
Harvest a

(years)
Location

Alban and Perala [53] 1992 7 50 35 MN, USA
Bauhus et al. [54] 2004 6 40 9 Germany
Bisbing et al. [55] 2010 6 100 40 MT, USA

Black and Harden [56] 1995 15 20 23 CA, USA
Boerner et al. [57] 2006 4 10 2 SC, USA

Borchers and Perry [58] 1992 4 15 14 OR, USA
Bravo-Oviedo et al. [59] 2015 8 30 15 Spain
Cade-Menun et al. [60] 2000 12 26 5 BC, Canada

Carter et al. [61] 2002 8 15 2 LA, TX, USA
Chatterjee et al. [62] 2009 19 54 21 WY, USA

Chen et al. [63] 2013 24 100 29 China
Chiti et al. [64] 2016 24 100 24 Ghana, Cameroon, Gabon

Christophel et al. [65] 2013 6 30 15 Germany
Christophel et al. [66] 2015 18 30 33 Germany

Cromack et al. [67] 1999 1 100 10 OR, USA
Dai et al. [68] 2001 3 70 14 NH, USA

DeByle et al. [69] 1980 10 5 3 WY, USA
Deluca and Zouhar [52] 2000 6 8 5 MT, USA

Diochon et al. [70] 2009 28 50 35 NS, Canada
Edmonds and McColl [71] 1989 4 20 3 Australia

Edwards and Ross-Todd [72] 1983 6 45 1 TN, USA
Elliott and Knoepp [73] 2005 3 15 3 NC, USA

Ellis et al. [73] 1982 4 10 2 Tasmania
Ellis and Graley [74] 1983 2 10 1 Tasmania

Esquilin et al. [75] 2008 1 10 14 CO, USA
Falsone et al. [76] 2012 3 130 5 Russia

Fraterrigo et al. [77] 2005 1 15 30 NC, USA
Frazer et al. [78] 1990 4 14 12 CA, USA

Gartzia-Bengoetxea et al. [79] 2009 2 5 10 Spain
Gillon et al. [80] 1999 2 0 1 France

Goh and Phillips [81] 1991 4 60 2 New Zealand
Goodale and Aber [82] 2001 2 10 85 NH, USA

Gough et al. [83] 2007 15 80 41 MI, USA
Grady and Hart [84] 2006 2 15 12 AZ, USA

Grand and Lavkulich [85] 2012 6 80 BC, Canada
Gresham [86] 2002 6 30 10 SC, USA

Griffiths and Swanson [87] 2001 3 10 20 OR, USA
Gundale et al. [88] 2005 4 10 3 MT, USA

Gupta and DeLuca [89] 2012 12 50 5 Wales
Hart et al. [90] 2006 2 15 1 AZ, USA

Hendrickson and Chattarpaul [91] 1989 6 20 3 ON, Canada
Herman et al. [92] 2003 2 9 8 CA, USA
Holscher et al. [93] 2001 2 20 22 Germany

Hwang and Son [94] 2006 2 30 2 Korea
Jang and Page-Dumroese [95] 2015 8 30 38 MT, USA

Johnson [96] 1991 3 20 3 NH, USA
Johnson and Todd [97] 1998 6 45 15 TN, USA

Johnson [98] 1995 12 7 NH, USA
Johnson et al. [99] 1997 14 53 6 NH, USA
Johnson et al. [100] 2014 4 60 1 CA, USA

Jones et al. [101] 2011 12 30 15 New Zealand
Kaye and Hart [102] 1998 2 15 1 AZ, USA
Keenan et al. [103] 1994 1 20 4 BC, Canada
Kelliher et al. [104] 2004 4 50 22 OR, USA
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Reference Year k Max Depth
(cm)

Time Since
Harvest a

(years)
Location

Kishchuk et al. [105] 2014 4 7 6 AB, Canada
Klockow et al. [106] 2013 9 20 1 MN, USA

Klopatek [107] 2002 6 20 30 WA, USA
Knoepp and Swank [108] 1997 4 30 33 NC, USA

Korb et al. [109] 2004 1 10 1 AZ, USA
Kraemer and Hermann [110] 1979 2 10 26 WA, USA

Kurth et al. [111] 2014 72 30 8 MI, MN, USA
Laiho et al. [112] 2003 5 22 5 NC, LA, USA
Latty et al. [113] 2004 2 15 90 NY, USA
Law et al. [114] 2001 3 100 21 OR, USA
Law et al. [115] 2003 9 100 62 OR, USA

Leduc and Rothstein [116] 2007 1 10 5 MI, USA
Maassen and Wirth [117] 2004 2 5 Germany
Mattson and Smith [118] 1993 30 10 11 WV, USA
Mattson and Swank [119] 1989 8 60 5 NC, USA

May and Attiwill [120] 2003 2 10 5 Australia
McLaughlin and Phillips [121] 2006 2 50 17 ME, USA

McKee et al. [122] 2013 8 60 24 AL, USA
McLaughlin [123] 1996 10 50 5 MI, USA

Merino and Edeso [124] 1999 6 15 1 Spain
Moreno-Fernandez et al. [125] 2015 54 50 60 Spain

Mu et al. [126] 2013 18 50 5 China
Murphy et al. [127] 2006 20 60 1 CA, USA
Neher et al. [128] 2003 3 20 2 NC, USA
Norris et al. [129] 2009 15 100 16 SK, Canada

O’Brien et al. [130] 2003 6 50 18 Australia
Powers et al. [131] 2011 20 30 13 MN, WI, USA

Prest et al. [132] 2014 5 50 35 NS, Canada
Prietzel et al. [133] 2004 4 0 1 WA, USA
Puhlick et al. [134] 2016 10 100 ME, USA

Rab [135] 1996 8 10 1 Australia
Riley and Jones [136] 2003 3 10 1 SC, USA
Roaldson et al. [137] 2014 16 20 5 CA, USA

Rothstein and Spaulding [138] 2010 6 30 MI, USA
Sanchez et al. [139] 2007 6 105 2 SC, USA

Sanscrainte et al. [140] 2003 4 70 WA, USA
Saynes et al. [141] 2012 8 5 11 Mexico
Selig et al. [142] 2008 3 30 14 VA, USA

Shelburne et al. [143] 2004 4 10 1 SC, USA
Sheng et al. [144] 2015 5 100 8 China

Skovsgaard et al. [145] 2006 12 30 0 Denmark
Slesak et al. [146] 2012 12 60 5 OR, WA, USA

Small and McCarthy [147] 2005 3 10 7 OH, USA
Stone et al. [148] 1999 1 15 1 AZ, USA

Stone and Elioff [149] 1998 4 30 5 MN, USA
Strong [150] 1997 8 40 18 MN, USA

Strukelj et al. [151] 2015 12 10 5 QC, Canada
Tang et al. [152] 2009 12 60 29 MI, WI, USA

Trettin et al. [153] 2011 6 150 11 MI, USA
Ussiri and Johnson [154] 2007 15 60 8 NH, USA

Vario et al. [155] 2014 6 60 49 NH, USA
Vesterdal et al. [156] 1995 9 0 Denmark
Waldrop et al. [157] 2003 3 0 1 CA, USA

Wu et al. [158] 2010 1 20 10 China
Xiang et al. [159] 2009 8 30 0 China
Yanai et al. [160] 2000 35 0 29 NH, USA

Zabowski et al. [161] 2008 2 20 25 OR, WA, USA
Zhong and Makeshin [162] 2003 2 10 16 Germany

Zummo and Friedland [163] 2011 15 60 3 NH, USA
a For chronosequence studies, time since harvest in this table is averaged across all response ratios for that study.
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